常用傅里叶变换对及证明

$\delta(t) \leftrightarrow 1$

Proof:

\[\begin{align*} F(\omega)&=\int_{-\infty}^{+\infty} f(t) e^{-j \omega t} d t \\ &= \int_{0-}^{0+} \delta(t) e^{-j \omega t} d t \\ &= \int_{0-}^{0+} \delta(t) d t \\ &= 1 \end{align*}\]

$e^{-at}\varepsilon(t) \leftrightarrow \frac{1}{a+j\omega}$ (a>0)

Proof:

\[\begin{align*} F(\omega)&=\int_{-\infty}^{+\infty} f(t) e^{-j \omega t} d t \\ &= \int_{0}^{+\infty} e^{-at} e^{-j \omega t} d t \\ &= \int_{0}^{+\infty} e^{-(a+j \omega) t} d t \\ &= \frac{1}{a+j\omega} \end{align*}\]

$e^{-a|t|}\leftrightarrow \frac{2a}{a^2+\omega^2}$ (a>0)

Proof:

\[\begin{align*} F(\omega)&=\int_{-\infty}^{+\infty} f(t) e^{-j \omega t} d t \\ &= \int_{-\infty}^{0} e^{at} e^{-j \omega t} d t + \int_{0}^{+\infty}e^{-at} e^{-j \omega t} d t \\ &= \frac{1}{a-j\omega} + \frac{1}{a+j\omega} \\ &= \frac{2a}{a^2+\omega^2} \end{align*}\]

$1 \leftrightarrow 2\pi\delta(t)$

Proof 1:

首先有: \(\lim_{a\rightarrow 0} e^{-a\left | t \right |} = 1\)

\(\begin{align*} F(\omega)&=\int_{-\infty}^{+\infty} f(t) e^{-j \omega t} d t \\ &= \int_{-\infty}^{+\infty} 1 \cdot e^{-j \omega t} d t \\ &= \int_{-\infty}^{+\infty} \lim_{a\rightarrow 0} e^{-a\left | t \right |} \cdot e^{-j \omega t} d t \\ &= \lim_{a\rightarrow 0} \int_{-\infty}^{+\infty} e^{-a\left | t \right |} \cdot e^{-j \omega t} d t \\ &= \lim_{a\rightarrow 0} \frac{2a}{a^2+\omega^2} \\ &= \left\{\begin{matrix} +\infty & \omega=0 \\ 0 & \omega \neq 0 \end{matrix}\right. \\ &= k \delta(\omega) \end{align*}\) $k $ 是未知数,现在要求 $k$ 。

由于 : \(\begin{align*} \lim_{a\rightarrow 0} \frac{2a}{a^2+\omega^2} &= k \delta(\omega) \end{align*}\) 两边求积分: \(\begin{align*} k &= \lim_{a\rightarrow 0} \int_{-\infty}^{+\infty}\frac{2a}{a^2+\omega^2} d\omega \\ &= \lim_{a\rightarrow 0} \int_{-\infty}^{+\infty}\frac{2}{1+(\frac{\omega}{a})^2} d\frac{\omega}{a} \\ &= 2\lim_{a\rightarrow 0} [\arctan \frac{\omega}{a}]_{-\infty}^{+\infty} \\ &= 2 \pi \end{align*}\) 所以 : \(1 \leftrightarrow 2\pi\delta(t)\)

Proof 2:

由 \(\delta(t) \leftrightarrow 1\) 傅里叶反变换 \(\begin{align*} \delta(t) &= \frac{1}{2\pi}\int_{-\infty}^{+\infty}1 \cdot e^{j\omega t} d \omega\\ \end{align*}\) $\delta(t)$ 为偶函数: \(\begin{align*} \delta(t) &= \delta(-t) \\ &= \frac{1}{2\pi}\int_{-\infty}^{+\infty}1 \cdot e^{-j\omega t} d \omega\\ \end{align*}\) 所以 : \(\begin{align*} \int_{-\infty}^{+\infty}1 \cdot e^{-j\omega t} d \omega = 2\pi\delta(t) \\ \end{align*}\)

$\varepsilon(t) \leftrightarrow \pi \delta(\omega)+\frac{1}{j\omega}$

Proof:

因为 : \(\lim_{a\rightarrow 0} e^{-at} = \varepsilon(t)\)

\[\begin{align*} F(\omega)&=\int_{-\infty}^{+\infty} f(t) e^{-j \omega t} d t \\ &= \int_{-\infty}^{+\infty} \varepsilon(t) \cdot e^{-j \omega t} d t \\ &= \int_{-\infty}^{+\infty} \lim_{a\rightarrow 0} e^{-at} \cdot e^{-j \omega t} d t \\ &= \lim_{a\rightarrow 0} \int_{-\infty}^{+\infty} e^{-at} \cdot e^{-j \omega t} d t \\ &= \lim_{a\rightarrow 0} \frac{1}{a+j\omega} \\ &= \lim_{a\rightarrow 0} (\frac{a}{a^2+\omega^2} - j\frac{\omega}{a^2+\omega^2}) \\ &= \left\{\begin{matrix} +\infty & \omega=0 \\ 0 & \omega \neq 0 \end{matrix}\right. + \frac{1}{j\omega}\\ &= k\delta(\omega) + \frac{1}{j\omega} \quad (k是未知数) \\ &= \pi \delta(\omega) + \frac{1}{j\omega} \quad (用积分求k值,见上方1\leftrightarrow 2\pi \delta 的Proof1)\\ \end{align*}\]
# 使用单$作为行内数学公式分界符