DFT到DCT的推导过程
最终得到 \(\begin{array}{c}{ {\hat{\mathbf{x}}[n] = a[n] \sum_{m=0}^{N-1} x[m] \cos \left(\frac{\pi}{N}\left(m+\frac{1}{2}\right) n\right)}\\ a[n]=\left\{\begin{array}{ll}{\sqrt{1 / N},} & {n=0} \\ {\sqrt{2 / N},} & {n=1,2 \ldots N-1}\end{array}\right.} \end{array}\)
生成变换矩阵
\[x[m]=\sum_{n=0}^{N-1} X[n] c[m, n]=\sum_{n=0}^{N-1} a[n] X[n] \cos \left(\frac{(2 m+1) n \pi}{2 N}\right)=\sum_{n=0}^{N-1} X[n] c[n, m] \quad(m=0, \cdots, N-1)\]有: \(c[n, m]=a[n] \cos (\frac{(2 m+1) n \pi}{2N})\)
1 |
|